Absorbing Boundary Conditions for the Discretization Schemes of the One-Dimensional Wave Equation
نویسندگان
چکیده
When computing a partial differential equation, it is often necessary to introduce artificial boundaries. Here we explain a systematic method to obtain boundary conditions for the wave equation in one dimension, fitting to the discretization scheme and stable. Moreover, we give error estimates on the reflected part.
منابع مشابه
High order nite-di erence approximations of the wave equation with absorbing boundary conditions: a stability analysis
This paper deals with the stability of nite di erence approximations of initial value problems for the wave equation with absorbing boundary conditions. The stability of a family of high order variational numerical schemes is studied by energy techniques. Dirichlet, sponge and rst order paraxial absorbing boundary conditions are treated. The variational form of the schemes as well as the use of...
متن کاملNumerical Absorbing Boundary Conditions for the Wave Equation
We develop a theory of difference approximations to absorbing boundary conditions for the scalar wave equation in several space dimensions. This generalizes the work of the author described in [8]. The theory is based on a representation of analytical absorbing boundary conditions proven in [8]. These conditions are defined by compositions of first-order, one-dimensional differential operators....
متن کاملA High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients
This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...
متن کاملLocal Absorbing Boundary Conditions for a Finite Element Discretization of the Cubic Nonlinear Schrödinger Equation
We consider in this work the initial value problem for the one dimensional cubic nonlinear Schrödinger equation. In order to integrate it numerically, one option frequently used, is to impose local absorbing boundary conditions. A finite element discretization in space of the cubic nonlinear Schrödinger equation is considered along with the absorbing boundary conditions obtained for an analogou...
متن کاملAlgebraic derivation of discrete absorbing boundary conditions for the wave equation
We introduce a new algebraic framework to derive discrete absorbing boundary conditions for the wave equation in the one-dimensional case. The idea is to factor directly the discrete wave operator and then use one of the factors as boundary condition. We also analyse the stability of the schemes obtained this way and perform numerical simulations to estimate their practical value. 1. Introducti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010